Keskijana


Keskijana eli mediaani on geometriassa jana, jonka toinen päätepiste on kohdejanan keskipisteessä. Esimerkiksi kolmiossa keskijana kulkee kolmion kärjestä vastakkaisen sivun keskipisteeseen eli kantapisteeseen. (Mediaani tarkoittaa myös erästä keskilukua: lukusarjan keskimmäistä lukuarvoa.)

Keskijanan kantapiste merkitään usein alaviitteellä, mutta merkinnässä on lähteistä riippuen eroja. Jos jana alkaa pisteestä A, saatetaan kantapistettä merkitä \({\displaystyle \scriptstyle M_{A}}\) tai \({\displaystyle \scriptstyle m_{A}}\). Joskus se merkitään \({\displaystyle \scriptstyle M_{a}}\) tai \({\displaystyle \scriptstyle m_{a}}\), jos se sijaitsee janalla \({\displaystyle \scriptstyle a.}\)[1]

Tässä merkitään kolmion sivujen pituuksia kirjaimilla a, b ja c sekä kolmion kärkiä kirjaimilla A, B ja C. Kantapisteet ovat silloin Ma, Mb ja Mc sekä keskijanojen pituudet ma, mb ja mc.

Sisällysluettelo

Kaavoja


Yleisen kolmion keskijanan pituus on \({\displaystyle \scriptstyle m_{a}={\tfrac {1}{2}}{\sqrt {2(b^{2}+c^{2})-a^{2}}},}\) missä keskijana toinen pää on janan \({\displaystyle \scriptstyle a}\) keskipisteessä. Tämä on seuraus Apolloniuksen lauseesta.[2][3]

Kun keskijanojen yhteispituuden puolikasta merkitään \({\displaystyle \scriptstyle s_{m}={\tfrac {1}{2}}(m_{a}+m_{b}+m_{c}),}\) pätee kolme asiaa:

Yleisiä teoreemoja


Jos kolmiossa on keskijanat yhtä pitkät kuin vastinjanat toisessa kolmiossa, ovat kolmiot yhtenevät.[5]

Jokainen keskijana leikkaa toisensa suhteessa 1 : 2. Keskijanat jakavat kukin yksin kolmion kahteen pinta-alaltaan tai, tasapaksulla levyllä vastaavasti, painoltaan yhtä painavaan, osaan.[4]

Kolmion keskijanat jakavat kolmion kuuteen pienempään kolmioon, joilla kaikilla on sama pinta-ala.[6]

Kolmion keskijanojen kantapisteiden kautta voidaan piirtää ympyrä. Tämä ympyrä kulkee myös kolmion korkeusjanojen kantapisteiden kautta.[7]

Keskijanojen kantapisteistä muodostuu keskinen kolmio, jonka painopiste sama kuin alkuperäiselläkin kolmiolla.[8]

Jos kolmion keskijana on samalla korkeusjana eli se kohtaa janan kohtisuorasti, on kolmio tasakylkinen- tai tasasivuinen kolmio.

Painopiste

Kolmion keskijanat leikkaavat aina samassa pisteessä, jota kutsutaan painopisteeksi ja merkitään usein kirjaimella G. Painopiste jakaa jokaisen keskijanan osiin suhteessa 2 : 1 siten, että janan lyhyempi osa jää kantapisteen puolelle. [9][6][10][11]

Lähteet


Viitteet

  1. Harju, Tero: Geometrian lyhyt kurssi, 2012, s.10
  2. Seppänen, Raimo et al., MAOL, s.28–29
  3. Harju, Tero: Geometrian lyhyt kurssi, 2012, s.17
  4. a b Weisstein, Eric W.: Triangle Median  (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
  5. Harju, Tero: Geometrian lyhyt kurssi, 2012, s.12
  6. a b Kurittu, Lassi: Geometria, 2006, s.107
  7. Harju, Tero: Geometrian lyhyt kurssi, 2012, s.26–27
  8. Weisstein, Eric W.: Medial Triangle  (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
  9. Harju, Tero: Geometrian lyhyt kurssi, 2012, s.25
  10. Kurittu, Lassi: Geometria, 2006, s.108
  11. Väisälä Kalle: Geometria, 1959, s.81









Luokat: Geometria




Tiedot vuodesta: 01.10.2021 12:06:56 CEST

Lähde: Wikipedia (Tekijät [Historia])    Lisenssi: CC-BY-SA-3.0

Muutokset: Kaikki kuvat ja suurin osa niihin liittyvistä sisustuselementeistä poistettiin. Jotkut kuvakkeet korvattiin FontAwesome-kuvakkeilla. Jotkut mallit poistettiin (kuten ”artikkeli tarvitsee laajennusta”) tai osoitettiin (kuten ”viittaukset”). CSS-luokat joko poistettiin tai yhdenmukaistettiin.
Wikipediakohtaiset linkit, jotka eivät johda artikkeliin tai luokkaan (kuten ”Punaiset linkit”, “linkit muokkaussivulle”, “linkit portaaliin”) poistettiin. Jokaisella ulkoisella linkillä on lisäksi FontAwesome-kuvake. Joidenkin pienten suunnittelumuutosten lisäksi media-säilö, kartat, navigointiruudut, puhutut versiot ja geomikroformaatit poistettiin.

Huomaa: Koska annettu sisältö otetaan automaattisesti Wikipediasta tiettynä ajankohtana, manuaalinen tarkistaminen oli eikä ole mahdollista. Siksi LinkFang.org ei takaa hankitun sisällön paikkansapitävyyttä ja todellisuutta. Jos tiedossa on tällä hetkellä vääriä tietoja tai siinä on virheellinen näyttö, ota rohkeasti yhteyttä ota meihin yhteyttä: sähköposti.
Katso myös: Valmistusmerkintä & Tietosuojakäytäntö.